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Nuclear Criticality Safety Engineer Training
Module 8

Hand Calculation Methods - Part I
Buckling Conversion and Surface Density Methods

LESSON OBJECTIVE

This module presents two traditional hand calculation methods for estimating the critical size or
subcriticality of a system, or establishing the limiting conditions for either single fissile units or
arrays of units.
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ORNL/NUREG/CSD-6, Oak Ridge National Laboratory (June 1978).

4) H. C. Paxton, J. T. Thomas, Dixon Callihan and E. B. Johnson, "Critical Dimensions
of Systems Containing U235, Pu239 and U233," Los Alamos Scientific Laboratory and
Oak Ridge National Laboratory Report TID-7028 (June 1964).

5) H. C. Paxton and N. L. Pruvost, "Critical Dimensions of Systems Containing U235,
Pu239 and U233, 1986 Revision," Los Alamos National Laboratory Report
LA-10860-MS (July 1987).

BACKGROUND

Before the development of high-speed, large-memory computers, hand calculations were widely
used to establish safe limits for fissile material operations. Today these methods might seem
obsolete, but they are still useful in providing a starting point for more elaborate calculations or
for providing a "sanity check" on the results of complicated computations. A preliminary review
of a fissile material system using one or more of these methods can often provide insight into the
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problem that may not be apparent from simply looking at a computer printout. These methods
also have a historical importance and provide a glimpse of the early days of criticality safety
calculations.

Part I of Hand Calculation Methods discusses buckling conversions and the surface density
model. Part II will cover the density analog and limiting surface density methods.

BUCKLING CONVERSIONS

The buckling conversion method is based on solutions to the diffusion equation that relate the
spatial neutron flux distribution in a neutron-multiplying medium to a parameter called the
geometric buckling, Bg

2. One of the earliest uses of this method was to relate the critical
dimensions of spheres, that had been measured experimentally, to those of cylinders of various
shapes (Ref. 4). Derivation of the buckling equations can be found in many nuclear engineering
text books (e.g., Ref. 1) and will only be summarized here. A concise derivation can also be
found in NCSET Module 6.

THE DIFFUSION EQUATION

The general diffusion equation in a multiplying medium is
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with the subscripts s and t indicating scattering and total cross sections, respectively.

This partial differential equation can be solved by using the separation of variables method to
look for a solution of the form
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where λ is a constant to be determined. As in Module 6, consider a homogenous problem similar
to the spatial diffusion equation,
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B is an arbitrary parameter and aN represents an extrapolated dimension of the system (e.g., x + d,
with d being the extrapolation distance). This problem actually has a series of solutions, but the
fundamental mode is
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If we identify this eigenvalue problem with the space dependent diffusion equation, then
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It is customary to refer to the value of B1
2 for the fundamental mode as the geometric buckling
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where the factor π/a' is characteristic of cartesian coordinates.

By definition, the state of criticality implies a time-independent flux distribution, which in turn
requires that the fundamental eigenvalue vanish.

( )λ ν Σ1 1
20= = − +v vDBa fΣ

The solution becomes

( )ϕ x t A B x, cos→ ≠1 1 function of time

with the criticality condition
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MATERIAL AND GEOMETRIC BUCKLING

That is, at critical, the material buckling, Bm
2, which depends on the material properties (cross

sections and atom densities) equals the geometric buckling Bg
2, which depends on the geometry

(e.g., slab width, a', in one-dimension cartesian coordinates). Thus, if one knows the critical
geometry for a sphere of a given material, the material buckling can be calculated and that can be
used to determine the critical geometry for other configurations of the same material.

Expressions for the geometric buckling of various geometries are given in many text books and
references. Some of the common ones are listed below (in each case, λ is the extrapolation
distance) and others can be found for hemispheres, semi-infinite cylinders, cylinders with
polygonal cross sections and more.
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Sphere of radius r: (10)B
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Finite cylinder with radius r and height h: (11)
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The extrapolation distance must be included because diffusion theory over-predicts critical
dimensions. The extrapolation distance (or extrapolation distance plus reflector saving for
reflected systems) must be subtracted from the calculated dimension or added to the physical
dimension in the expressions for Bg

2.

Figures 8-1 and 8-2 show typical curves of extrapolation distances for sphere and cylinders of
several materials. These curves are taken from TID-7028 (Ref. 3). Each curve has points for
spheres plus curves for cylinders with varying height-to-diameter ratios. Note the values for
spheres lie at H/D = 1.
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Figure 8-1. Effective extrapolation distances for cylinders of U(93.2)O2F2 solutions. Cylinder
height and diameter are h and d, respectively. (From TID-7028, Fig. 3)

Figure 8-2. Effective extrapolation distances for cylinders of U(93.5) and δ-phase plutonium
metal. Cylinder height and diameter are h and d, respectively. (From TID-7028,
Fig. 4)
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A BUCKLING EXAMPLE

Consider an example of using buckling conversion to calculate the relation between the critical
mass of a water-reflected sphere of enriched uranium metal (93.5 wt-% 235U at a density of 18.8
g(U)/cm3) and the critical masses of water-reflected cylinders containing the same material.
Since the buckling of the cylinder is a function of both height and diameter, this is a parametric
problem with a series of solutions. Figure 42 of Ref. 5 gives the critical mass of a water-
reflected sphere of this material as approximately 22.2 kg. Based on the given density, the radius
of this sphere is 6.56 cm. Using the top curve in Fig. 8-2, δ = 4.1 cm for the sphere. Combining
these values, Eqn. 10 gives Bg

2 = 0.0868 cm-2.

Next, pick a height-to-diameter ratio, for example, 5. From Fig. 8-2 the extrapolation distance
for this cylinder is about 4.24 cm (tip: use a ruler to interpolate between grid lines). Knowing the
buckling and H/D, Eqn. 11 can be solved for either r or h. This is most easily done by using a
program with an equation solver, such as Excel. Doing this, the radius is calculated to be 4.12
cm, giving a critical mass of 41.2 kg. Note that this long, thin cylinder has a critical mass
approximately twice that of the sphere. This result is in good agreement with Fig. 5 of Ref. 5.

If this procedure is repeated for several values of H/D, a curve similar to the one below can be
generated. Note that the minimum critical mass of the cylinder has a height-to-diameter ratio of
unity. Also note that the critical mass of the sphere is lower than that for the optimum cylinder,
reflecting the fact that the sphere is still a more reactive geometry.

Figure 8-3. Comparison of U(94) critical mass for a sphere and cylinders.
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SURFACE DENSITY METHOD

The basis of the surface density method is a comparison of the fissile material density of an array
as projected onto a plane with the density of a water-reflected critical slab of the same material.
This method is useful for determining safe parameters for arrays including the fissile mass per
array unit, spacing of the units or the maximum safe number of units that can be stacked. Similar
methods such as the density analog and limiting surface density models will be covered in the
second NCSET module on hand calculations.

The surface density method is semi-empirical, being based on a series of experiments plus
calculations [3]. Many formulations of this method exist with varying underlying assumptions.
Features of multiple methods must not be combined without adequate validation of the resulting
method. One well-accepted formulation of the surface density method, on which the following
discussion is based, is given in Ref. 3. The data required to use this method are the critical
density of a water-reflected infinite slab and the critical mass of an unreflected sphere of the
material in question.

Given that the mass of an array of fissile material is projected onto a plane surface to form the
equivalent of a slab of that material, the allowed (i.e., subcritical) projected surface density (in
g/cm2) is given by the expression

(12)σ σ= −054 1 1370. ( . )f

where σ 0 is the surface density of the critical water-reflected infinite slab (in g/cm2) and f is the
fraction critical of a unit in the array, i.e., the ratio of the mass of the unit to the critical mass of
an unreflected sphere of the same material. (Note the use of the water-reflected slab density, but
the bare spherical critical mass.) Since the surface density cannot be negative, the fraction
critical is limited to a value of about 0.73 in this formulation of the method.

If the array of units, each with fissile mass m (in g), is considered to consist of cubic volumes in a
regular array, the projected surface density is

(13)σ =
nm

d2

where n is the number of units stacked perpendicular to the projection plane and d is the length of
the sides of the cubical volume associated with each unit. Combining these two expressions for
σ, the safe dimension of the unit volume (in cm) is given by
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In the absence of critical data, subcritical values from the figures in standard references, such as
Ref. 3, may be used to give conservative results. According to Ref. 3, these equations are
"applicable to infinite planar arrays reflected by water at least 155 mm thick or its nuclear
equivalent." The reflector can be "no closer to units in the array than the boundaries of the cells
associated with the units." This method can be used for arrays of bare metal, dry materials or
solutions. The key is to use the data corresponding to the material or mixture in the array
elements.

A SURFACE DENSITY EXAMPLE

The surface density method can often provide a quick, conservative answer about the safety of an
array. Consider a waste management organization that wants to store waste materials that
contain 93 wt-% enriched UO2 mixed with various plastics, papers, etc. Their plan is to use
cubical steel bins, 4-ft on edge, and stack them three-high. The proposed 235U mass limit is 325 g
per bin. Is this a safe configuration?

The data needed to answer the question are the mass of a bare critical sphere of UO2 and the
critical thickness of a water-reflected slab of the same material. Since no restrictions were put on
the amount of moderating materials that could be mixed with the uranium, the worst case or
optimal moderation must be assumed. From Fig. 2.1 of Ref. 3 (or from Module 5), the
subcritical limit for a spherical mass of 235U in an aqueous UO2 solution or as a metal-water
mixture is about 620 g, with a 25-mm thick reflector at a uranium concentration of about 0.044
kg(U)/L. This provides a conservative value for an unreflected critical sphere. From Fig. 2.4 of
Ref. 3, the subcritical thickness limit for a reflected infinite slab of 235UO2 at the same uranium
concentration is about 96 mm.

Using the spherical mass and the proposed mass limit, the fraction critical is f = 0.524. The
allowed surface density is the product of the slab thickness and the uranium density, σ 0 = 0.422
g/cm2. Putting these values into Eqn. 12, the limiting array surface density is 0.064 g/cm2. Next,
solve Eqn. 13 for n to get n = 2.94. So the answer to the question about a stacking these bins
three-high is that it is probably safe, but might require a little less conservative analysis.
Subcritical limits were used for both the sphere and the slab, the value for the sphere was actually
for a thin reflector, and no credit was taken for the enrichment of the material. Reducing the
conservatism in these factors would probably give a value of n greater than three.

SUMMARY

This module has presented two simple hand calculation methods, buckling conversion and
surface density. Although largely displaced by the availability of today's fast computers, both
methods are still used for quick, generally conservative estimates of the criticality safety of both
single fissile units and arrays.
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PROBLEMS

1. A glove box used to machine samples of uranium (94 wt-% 235U) has a small rectangular
sump, 8 in. x 8 in. x 8 in. deep, in one corner to collect water from wet grinding operations. Is
this sump geometrically safe? Assume the extrapolation distance for a cuboid is the same as that
for a cylinder.

2. Table 29 of LA-10860-MS gives the critical mass of a bare sphere of U(94) with a density of
18.74 g/cm3 as 49.12 kg. Calculate the radius and geometric buckling of the critical sphere.
Calculate the mass and radius of a cylinder of U(94) with H/D = 1 having the same buckling.

3. A facility would like to store units of 5 kg of U(70)O2 with H:U = 12 in stacks two-high.
Calculate the limiting surface density and the recommended array spacing.
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PROBLEM SOLUTIONS

1. From Fig. 7 of LA-10860-MS, the extrapolation distance for unreflected U(94) cylinders is
nearly constant at 2 cm. Using the given assumption that the extrapolation distance is the same
for a cuboid, the buckling of the sump is (from Eqn. 9)
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2 2
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From Fig. 6 of LA-10860-MS, the ratio of the extrapolation distance for a sphere to that for a
cylinder is nearly one. From Eqn. 10, the radius of an equivalent sphere is then
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2

2 2
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r
−π= =

+ λ

Solving this equation, r = 12.05 cm and V = 11.6 L. Figure 2.2 of TID-7016 Rev. 2 shows that
the minimum critical volume for 235U can be much less than 11.6 L, so this sump is not
geometrically safe.

2. Since the volume of the sphere is simply the mass divided by the density, V = 2.62 L. The
radius can then be calculated as 8.553 cm. Figure 7 of LA-10860-MS shows that the effective
extrapolation distance for a cylinder with H/D = 1 is about 2 cm for 94% enriched uranium.
Figure 6 of the same reference shows that the ratio of the spherical extrapolation distance to the
cylindrical extrapolation distance is nearly 1 for cylinders with H/D = 1. Since the ratio of the
spherical to cylindrical extrapolations distances is 1, and the spherical extrapolation distance is
given as 2 cm, Equation 10 gives

( )
2

2 2
g 2B 0.0886cm

8.553 2
−π= =

+

With this value of the buckling, and assuming that the axial and radial extrapolation distances for
the cylinder are the same, Equation 11 can be used to find the cylinder radius by inserting the
buckling calculated above with λ = 2 cm, then solving for r = 7.65 cm. Since H/D = 1, the height
of the cylinder is 15.3 cm, the volume is 2.81 L and the mass is 52.7 kg, slightly larger than the
spherical critical mass.

3. This is the sample problem given in TID-7016 Rev. 2. Using the 25-mm reflected curve from
Fig. 2.1 of that reference, a conservative value for the critical mass of an unreflected sphere is
approximately 14 kg (U). (Note that this is for 235U. According to Fig. 3.4 of TID-7016 this
value could be increased by a factor of 1.5 for 70% enriched material.) From Fig. 2.4 of TID-
7016 the reflected critical slab thickness is about 34 mm (also conservative since this is a
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subcritical limit). At H:U = 12, the density of uranium in the solution is about 2.1 g(U)/cm3. The
surface density of the critical slab is then

3
0

2

2.1g(U) / cm 3.4cm

7.14g(U) / cm

σ = ∗

=

The fraction critical, not accounting for the enrichment, is f = 5/14 = 0.357. Then using Eqn. 12,
the allowed surface density is

( )
2

0.54 7.14 1 1.37 0.357

1.97 g(U) / cm

σ = ∗ ∗ − ∗

=

Eqn. 14 then gives, for the two-tier array,

d = 71.2 cm .

If the mass factor for the U(70) sphere is used, the fraction critical becomes 0.238, the surface
density becomes 2.6 g(U)/cm2 and the allowed spacing is 62.0 cm.


